

Etherstore User Guide V2.0

…a di!erent perspective

morephE. etherstore User Guide V2.0.

…a di!erent perspective

1

1. INTRODUCTION

Etherstore uses fast solid-state storage to enable you to record and play back the full RF
bandwidth of the Etherstore. You can either play back your own recordings, or upload waveforms
you have created yourself.

To get started with recording, see Create new recording.

To get started with your own waveforms, see Upload file and Playback.

For information about the user interface, see GUI: Basic.

To transfer recordings between Etherstores, see Transfer files between Etherstores.

WARNING You should exit the application on the host PC before powering down Etherstore
to enable an orderly shutdown of the internal disk and prevent data loss.

2. GUI: BASIC
This is the standard interface you will see when you start the application.

1. Create new file to record into. See Create new recording.
2. Upload a waveform file to the Etherstore. See Upload file.
3. Delete the selected file.

1 2 3 4 5 6 7 8

9 10
11

12
13

14 15
16

17
18

19
20

21

22
23 24

25
26

27
28

29

30

31

morephE. etherstore User Guide V2.0.

…a di!erent perspective

2

4. Download the selected file. See Download file.
5. Start recording into the currently selected file.

WARNING This will overwrite the file. If the file is not empty, then a warning dialog
will be displayed.

6. Play the selected file.
7. Display this help file.
8. Application information.
9. List of files on the Etherstore. Select the file for Delete / Download / Record / Play.
10. Information about the currently selected file.
11. You can change the file name here. Press the Rename button to save the new name to the

Etherstore.

12. The format of the current file. See Internal file formats.
13. The attenuation and port that were used during recording for the current file.
14. Full scale power of the current recording.
15. Set this as the transmit power, so the power at the port is the same as during recording.
16. Controls for Playback
17. Skip the beginning of the file. This can be specified in samples, seconds, minutes, or hours
18. End the playback early.
19. The start and end point of the playback can also be controlled using this slider.
20. Loop the playback forever. If this is enabled, the start and end point are ignored.
21. Click this toggle switch to switch the port for recording between the "Monitor In" and "Tx /

Rx" port of the Etherstore.
22. Set the receive attenuation. See Recording.
23. Slider to set receive attenuation.
24. Set receive attenuation automatically. Wait 5-10 seconds after enabling this before starting

a recording.
25. Set transmit full scale power.
26. Slider to set transmit full scale power.
27. For recordings this allows you to set the transmit power relative to the power recorded.
28. A spectrum plot of the currently received samples, showing frequency (Hz) vs Power

(dBm).
29. The raw ADC data. The ADC is 12-bit, so the full-scale range is -2048 to 2047. You must

set the receive attenuation high enough that the waveform does not hit the limits of this
graph to get an accurate recording.

30. Enable GUI: Advanced mode.
31. The status bar shows the total and free space on the disk and the current progress of any

transfers between the host PC and the Etherstore, playbacks or recordings that are in

morephE. etherstore User Guide V2.0.

…a di!erent perspective

3

progress. When a transfer, playback or recording is in progress, a cancel button will be
visible here

3. GUI: ADVANCED
If you enable the advanced checkbox in the upper right of the GUI, you will get some extra
information

1. Number of blocks used on the SSD.

2. Number of fragments the file is broken into / Size of smallest fragment. If the smallest
fragment is very small, or the number of fragments very high, then you may have
problems with recording / playback of this file, and you should delete some files on the
Etherstore to free up space.

3. Number of samples in the file.
4. Centre frequency of the file.
5. Sample rate of the file.
6. You can set extra digital gain here. Some recordings will be of very low amplitude, which

limits the maximum power you can transmit them at. You can compensate for this using
digital gain. However, setting the digital gain too high will cause clipping when the
amplitude exceeds the full-scale range of the internal DAC.

7. Reset the digital gain to 0.

1
2

3
4

5 6 7

morephE. etherstore User Guide V2.0.

…a di!erent perspective

4

4. CREATE NEW RECORDING
Before recording, you must first create an empty file to record into. Click to show the dialog and
enter the name and length. Once the file is created, simply press on the toolbar to begin
recording. See Recording for more information.

4.1. Dialog

1. Set file name shown in the file list.
2. Length of the new recording, which can be specified in samples, seconds, minutes, or

hours. The default value is the maximum length available in the remaining disk space.
3. Reset to maximum length.

5. PLAYBACK
Before playing a file you should:

1. Set the desired playback range in "Play Controls", or enable "Loop" to play the file

repeatedly until it is manually cancelled.

2. Set the desired transmit power in the "Tx dBm" field or using the slider below. The
transmit power is calibrated for a full-scale sine wave, for example the first Python
example will be output at that power. Many other waveforms will be backed off from this
power to accommodate the peak power, so the actual average power will be lower. This
will apply to all recordings. It’s up to you to work out what the offset is for your specific
waveform.

3. In GUI: Advanced you can add digital gain to increase the available transmit power

range, but this may cause clipping. It should not exceed the dBFS value of the highest
amplitude sample in the waveform. For example, if it’s a 12 bit waveform, the maximum
value is 2047, so if the maximum absolute value actually present in the file is 123 you
can add up to 20 * log10(2047 / 123) = 24dB of digital gain.

4. To start playback press , and to cancel press in the status bar.

6. RECORDING
Before recording you should:

1. Select the port you’re using.

1

2

3

morephE. etherstore User Guide V2.0.

…a di!erent perspective

5

2. Select an appropriate Rx attenuation. This should be set as low as possible for the best
noise figure, but high enough that the peak power expected fits into the full-scale range
of the ADC. You can use the ADC Data display to check this. If you check "Rx Atten
Auto" it will continually select an appropriate power based on the last ~5 seconds of
data. This will be automatically disabled during a recording so that it is possible to
correctly reproduce the waveform power on playback. The Spectrum plot will show you
how the noise floor is affected and provides a sanity check to ensure your signal is being
received.

To start recording press .

7. UPLOAD FILE
To upload a waveform you have created click and enter the information required in
the Dialog. There are 3 formats supported for upload:

1. 12 bit real signed integer
2. 16 bit real signed integer
3. 16 bit complex, which should have the real and imaginary parts interleaved

The file is interpreted as a plain binary file with all samples packed. A complex waveform will be
centred at 2440MHz on playback, whereas a real waveform is effectively single sided with 0Hz
at 2390MHz. Real waveforms are played at 200MSPS, complex at 100MSPS.

NOTE
Uploading a recording you previously downloaded in "raw" mode as 12 bit real may
appear to work, but the correction factors will be lost, so there will be a frequency
dependent amplitude error when it is played.

See Python example for an example of how to create a file for upload using python and numpy.

See Playback for how to play your file once you have uploaded it.

7.1 Dialog

1. File name on PC. Click here to reopen the file dialog.
2. File name on Etherstore.
3. Format of file. See Internal file formats.

1

2

3

morephE. etherstore User Guide V2.0.

…a di!erent perspective

6

7.2 Python example
To create a 16 bit real file with a full scale sine wave at 2430MHz (2390 + 40):

from numpy import int16, pi, sin, arange
f = 40
x = (32767*sin(2*pi*f/200*arange(1e8))).astype(int16)
x.tofile("sin16.bin")

To create a 16 bit complex file with a sine wave at 2450MHz (2440 + 10), -12dBFS:

from numpy import int16, pi, sin, cos, arange, empty
x = empty(int(1e8), dtype=int16)
f = 10
x[::2] = 2**13*sin(2*pi*f/100*arange(len(x)/2))
x[1::2] = 2**13*cos(2*pi*f/100*arange(len(x)/2))
x.tofile("cplx16.bin")

8. DOWNLOAD FILE
Press to start downloading the current file. A file selection dialog will pop up to choose the
destination location, followed by a Dialog to choose the format and length to download.

8.1. Dialog

1. File name on PC. Click here to reopen the file dialog.
2. Format of file to save. See File formats.
3. Skip the beginning of the file.
4. Skip the end of the file.
5. Set the start and end point by slider.

9. TRANSFER FILES BETWEEN ETHERSTORES
“Raw” files downloaded using Etherstore V2.0 software or later can be transferred between
Etherstores or uploaded to the same Etherstore without loss of information regarding the state
of the receiver during recording, ie the information concerning the receiver port and frontend
attenuation is preserved.

1

2

3

2
5

morephE. etherstore User Guide V2.0.

…a di!erent perspective

7

To transfer a file between Etherstores:

1. Download the file from the first Etherstore using “Raw (int12 packed)” format
2. Upload the file to the second Etherstore using “12bit” format.

10. FILE FORMATS
There are 2 output file formats supported for recordings, "Volts" and "Raw":

1. "Volts" returns the file stored in 32-bit floating point format, with the correction filter
applied and scaled to volts across 50Ω at the input to the Etherstore.

2. "Raw" returns the raw 12-bit signed ADC samples. See Internal file formats.

Uploaded files are always returned in the same format they were uploaded with.

In "Volts" mode, the file saved is much larger (32/12 x bigger). We intentionally set the meaningless
low order bits to 0, so the file is compressible. To save space, you can put it into an archive such
as a .zip file, or enable file compression in the operating system. On Windows, you can do this by
right clicking on the file, click 'Properties', click 'Advanced', check "Compress contents to save
disk space". This will reduce the disk usage by ~30%. This will only work on a local disk with the
default NTFS filesystem, the option is not available on a FAT formatted USB drive, for example.

10.1 Internal file formats
There are four file formats supported on the disk:

1. 12 bit Real
2. 16 bit Real
3. 16 bit Complex
4. 12 bit Real Recording

All should be packed binary signed integers. The first 3 are Upload file formats. The
recording format is similar to the 12 bit real format, it is also 12 bit packed integers, but it
also contains some information about the port and attenuation used for the recording to
allow an amplitude calibration to be applied. The calibration is applied automatically during
playback, or when you download the file in "Volts" mode. If you download a file in "Raw"
mode, you should apply the correction yourself. The correction is available as comma
separated floating point values in the "Rx FIR" field in GUI: Advanced. It is a 39 tap FIR filter
that should be applied after extracting the 12 bit "Raw" values and converting to floating
point.

11. PYTHON API
Support is provided for driving the Moreph30 directly from Python on a Windows platform. This
support is available for Python 2.7 onwards. Both 32 bit and 64 bit versions are available.

11.1 Prerequistes
To import the Etherstore module, include the location of the appropriate PyRFCreations
library on the current path. Then import the following:

morephE. etherstore User Guide V2.0.

…a di!erent perspective

8

sys.path.append('D:/Program Files/RF Creations/PyRFCreations_3v8_64bit')

from RFCreations import MorephDevice, MorephSearch, MorephInterface,
EtherStoreInterface, vector_fd

11.3 Connecting to the Etherstore
To connect to the Etherstore it is first necessary to create a search engine by calling
MorephSearch.get(). Having obtained a search engine, the following operations should be
performed:

1. Attach a callback to the search engine by invoking the callback() method. The
callback will process the Moreph30s and Etherstores that are discovered by the
search engine.

2. Start the search engine by invoking the start() method.

Whenever a Moreph30 or Etherstore is discovered, the callback will be entered with a
handle to the device and a flag to indicate whether it was discovered on USB or Ethernet. In
the example code below, the callback appends the device to a list if it is a USB device or an
Ethernet device.

In the example program, the main thread monitors the contents of the list. Whenever a new
entry is placed on the list, the main thread obtains an interface to the device by invoking the
MorephInterface() method. Having obtained an interface to the device, the friendly name,
serial number and current IP address are interrogated. If these satisfy certain search criteria,
then the required device has been found and opened, otherwise the entry is discarded from
the list.

Once the required device has been found, the search engine is stopped by invoking the
stop() method.

from __future__ import print_function
import sys, struct
from collections import namedtuple
from time import sleep

sys.path.append('D:/Users/timbo/build-pyRFCreations_MSVC2017_32bit_2v7-Release')

from RFCreations import MorephDevice, MorephSearch, MorephInterface,
SapphireInterface, vector_uchar, vector_float, vector_int16, vector_char

MorephName = "My first Moreph"
MorephSerialNumber = 172

"""
Connect to first device found which matches either MorephName or MorephSerialNumber
"""

def connect():
 moreph = []

 ms = MorephSearch.get()

 def callback(m):
 if ((m.type == MorephDevice.USB) | (m.type == MorephDevice.Eth)):
 moreph.append(m)

morephE. etherstore User Guide V2.0.

…a di!erent perspective

9

 ms.set_callback(callback)
 ms.start()

 found = False
 while True:
 while len(moreph):
 try:
 transport = moreph[0].getTransport();
 mi = MorephInterface(transport)
 name = mi.getFriendlyName()
 sn = mi.getSerialNumber()
 print("Found" , name , sn)
 if((name == MorephName) | (sn == MorephSerialNumber)):
 found = True
 break
 del moreph[0]
 break
 except:
 del moreph[0]
 if found:
 break
 sleep(0.1)

 print("Stop")
 ms.stop()

 print("Opening Etherstore")

 return transport

11.4 Launching the Etherstore application
The Etherstore application is launched by calling EtherStoreInterface(). This returns an interface
to the Etherstore application.

 # Connect to an Etherstore
 transport = connect()

 # Launch the EtherStore application
 etherStore = EtherStoreInterface(transport)

morephE. etherstore User Guide V2.0.

…a di!erent perspective

10

11.5 Example code
-*- coding: utf-8 -*-
"""
Created on Tue Apr 11 19:29:36 2017

@author: tim
"""
from __future__ import print_function
import sys

sys.path.append('D:/Program Files/RF Creations/PyRFCreations_3v8_64bit')

from time import sleep
from RFCreations import MorephDevice, MorephSearch, MorephInterface, EtherStoreInterface, vector_fd

"""
Set either the name or the serial to be the same as the Moreph device you wish to connect to
"""
MorephName = "Demo unit"
MorephSerialNumber = 147

etherStore = 0

"""
Connect to first device found which matches either MorephName or MorephSerialNumber
"""

def connect():
 moreph = []

 ms = MorephSearch.get()

 def callback(m):
 if (m.type == MorephDevice.USB):
 moreph.append(m)

 ms.set_callback(callback)
 ms.start()

 found = False

morephE. etherstore User Guide V2.0.

…a di!erent perspective

11

 while True:
 while len(moreph):
 try:
 transport = moreph[0].getTransport();
 mi = MorephInterface(transport)
 name = mi.getFriendlyName()
 sn = mi.getSerialNumber()
 print("Found" , name , sn)
 """
 To connect to the first Moreph device found, ignore test and set found = True
 """
 if((name == MorephName) | (sn == MorephSerialNumber)):
 found = True
 break
 del moreph[0]
 break
 except:
 del moreph[0]
 if found:
 break
 sleep(0.1)

 ms.stop()

 print("Opening Moreph")

 return transport

def listFiles():
 fds = etherStore.listFiles()
 for fd in fds:
 print(etherStore.fileName(fd))
 print(" Duration : " , etherStore.fileDuration(fd) , "s")
 print(" Rx Atten : " , etherStore.fileRxAttenuation(fd) , "dB")
 if(etherStore.fileRxPort(fd) > 0):
 print(" Rx Port : Monitor In");
 elif(etherStore.fileRxPort(fd) == 0):
 print(" Rx Port : Tx/Rx");
 else:
 print(" Rx Port : Unknown");
 if(etherStore.fileFormat(fd) == 0):
 print(" Format : 12bit Real");
 elif(etherStore.fileFormat(fd) == 1):

morephE. etherstore User Guide V2.0.

…a di!erent perspective

12

 print(" Format : 16bit Real");
 elif(etherStore.fileFormat(fd) == 2):
 print(" Format : 12bit Real Recording");
 elif(etherStore.fileFormat(fd) == 5):
 print(" Format : 16bit Complex");
 else:
 print(" Format : Unknown");

def findFile(name):
 fds = etherStore.listFiles()
 for fd in fds:
 if(etherStore.fileName(fd) == name):
 return fd
 return -1

"""
Main script
"""

if __name__ == '__main__':

 # Connect to an Etherstore
 transport = connect()

 # Launch the EtherStore application
 etherStore = EtherStoreInterface(transport)

 # List the files on the EtherStore
 print("Existing files")
 listFiles()

 # Create a new file of duration 10s
 # A file descriptor to the file is returned
 print("Create new file")
 fd = etherStore.createFile(10 , "New file")
 listFiles()

 # Rename the new file
 print("Rename new file")
 etherStore.renameFile(fd , "Renamed file")
 listFiles()

 # Find the file descriptor for a named file

morephE. etherstore User Guide V2.0.

…a di!erent perspective

13

 fd = findFile("Renamed file")
 print("Found file descriptor " , fd , " for file 'Renamed file'")

 # Set the receiver to Monitor In port and 0 attenuation
 print("Set receiver port to Monitor In")
 etherStore.rxSetup(1 , 0);

 # Turn on AGC to find received signal level
 print("Turn on AGC")
 etherStore.setAGC(1)

 # Search for the maximum attenuation that the AGC thinks is required
 rxAtten = 0
 for k in range(5):
 atten = etherStore.getAtten()
 print("New attenuation value " , atten , "dB")
 if(atten > rxAtten):
 rxAtten = atten
 print("Recording attenuation is " , rxAtten , "dB")

 # Turn off the AGC
 print("Turning off AGC")
 etherStore.setAGC(0)

 # Set the receiver to Monitor In port and appropriate attenuation
 print("Setting up receiver for Monitor In and attenuation " , rxAtten)
 etherStore.rxSetup(1 , rxAtten);

 # Record into the new file
 print("Start recording")
 etherStore.record(fd)

 # Wait for the recording to complete with a timeout of 15s (expected time to record is 10s)
 print("Waiting for recording to end")
 etherStore.waitRecord(15)
 print("Recording ended")

 # Setup the transmitter to playback at maximum possible power
 print("Set transmitter for maximum power")
 etherStore.txSetup(5)

 # Playback part of the recording starting at 2s and for a duration of 4s
 print("Playback from 2s to 6s")

morephE. etherstore User Guide V2.0.

…a di!erent perspective

14

 etherStore.playback(fd , 2 , 4)

 # Wait for playback to end with a timeout of 10s (expected time to playback is 4s)
 print("Wait for playback")
 etherStore.waitPlayback(10)
 print("Playback ended")

 # Playback recording at same level as received, if this is too loud then use maximum possible power
 print("Set transmitter to playback at same level as recording")
 level = etherStore.recordLevel(fd)
 if(level > 5):
 level = 5
 print("Setting transmit level to " , level)
 etherStore.txSetup(level)

 # Playback the recording, repeating forever
 print("Playback with repeat forever")
 etherStore.playbackForever(fd)
 sleep(15)

 # Cancel playback
 print("Cancelling playback")
 etherStore.cancelPlayback()

 # Delete the file
 print("Delete file")
 etherStore.deleteFile(fd)
 listFiles()

 # Close the application
 etherStore.exitApp()
 etherStore = 0
 transport = 0

MorephE. etherstore User Guide V2.0

…a di!erent perspective

15

12 PYTHON LIBRARY REFERENCE
This section lists the Python library commands which are available for the Etherstore application.

12.1 listFiles
listFiles() will return an list of the file descriptors for the files held on the Etherstore,

fds = etherStore.listFiles()
fds is a list of file descriptors.

12.2 filename
filename() will return the name of a file associated with a file descriptor.

name = etherStore.fileName(fd)

name is the name of the file associated with file descriptor fd

12.3 fileDuration
fileDuration() will return the duration of a file associated with a file descriptor.

duration = etherStore.fileDuration(fd)

duration is the duration in seconds of the file associated with file descriptor fd

12.4 fileRxAttenuation
fileRxAttenuation() will return the receiver frontend attenuation used during the recording
of the file

attenuation = etherStore.fileRxAttenuation(fd)

attenuation is the receiver frontend attenuation used during the recording of the file
associated with file descriptor fd

12.5 fileRxPort
fileRxPort() returns the receiver port used during the recording of the file

port = etherStore.fileRxPort(fd)

port is the receiver port used during the recording of the file associated with file descriptor
fd. Possible values are:

MorephE. etherstore User Guide V2.0

…a di!erent perspective

16

 0: Monitor In
 1: Tx/Rx
 any other value indicates that the port is unknown (for example, it is user generated file)

12.6 fileFormat
fileFormat() returns the format of the file

format = etherStore.fileFormat(fd)

format is the format of the file associated with file descriptor fd. Possible values are:

 0: 12bit real data
 1: 16bit real data
 2: 12bit real recording
 3: 16bit complex data

12.7 createFile
createFile() creates a new file on the Etherstore into which data can be recorded.

fd = etherStore.createFile(duration , name)

fd is the file descriptor associated with the newly created file
duration is the length of the file to create in seconds
name is the name of the file to create

12.8 renameFile
renameFile() changes the name of a file held on the Etherstore.

etherStore.renameFile(fd , newName)

fd is the file descriptor of the file which is to be renamed
newName is the new name to be associated with the file

12.9 findFile
findFile() returns the file descriptor associated with a file name

fd = findFile(fileName)

fd is the file descriptor associated with the file
fileName is the name of the file for which the file descriptor is requested

12.10 deleteFile
deleteFile() deletes the file associated with a specific file descriptor.

MorephE. etherstore User Guide V2.0

…a di!erent perspective

17

etherStore.deleteFile(fd)
fd the file descriptor associated with the file to be deleted.

12.11 rxSetup
rxSetup sets the receiver port and attenuation which will be used for a recording

etherStore.rxSetup(port , attenuation)

port is the receiver port to be used for the recording. Possible values are:
 0: Monitor In
 1: Tx/Rx

attenuation is the receiver frontend attenuation to be used for the recording. Valid values
are in the range 0 to 31.5dB in steps of 0.5dB.

12.12 setAGC
setAGC() enabled or disables the automatic gain control algorithm

etherStore.setAGC(on_off)
on_off is a Boolean which either enables or disables the automatic gain control
algorithm

12.13 getAtten
getAtten() returns the receiver frontend attenuation which is currently in use. This may have
been set either by the automatic gain control algorithm or by calling rxSetup().

atten = etherStore.getAtten()

atten the current receiver frontend attenuation in dB. Permissible values are 0 to 31.5dB in
steps of 0.5dB.

12.14 txSetup
txSetup()set the transmit output power which will correspond to full scale deflection of the
DAC. The DAC has a range of +/- 32767.

etherStore.txSetup(fullScalePower)

fullScalePower is output power of the transmitter corresponding to full scale deflection of
the DAC. The maximum output power which can be specified is +5dBm.

12.15 recordLevel
recordLevel() returns the full scale transmitter output power necessary to replay a recorded
file at the same level as it was received.

MorephE. etherstore User Guide V2.0

…a di!erent perspective

18

level = etherStore.recordLevel(fd)

level the full scale output power necessary to replay the file at the same level as which it
was received. Note: this may be greater than the maximum transmit power of +5dBm.
fd the file descriptor associated with the file for which the full-scale output power is
required.

12.16 record
record() instructs the Etherstore to record data into the file associated with a specified file
descriptor. Recording will cease once the file is full.

etherStore.record(fd)
fd is the file descriptor associated with the file into which the recorded data
will be placed.

12.17 waitRecord
waitRecord() waits for the current recording to complete or for a timeout to expire.

etherStore.waitRecord(timeout)

timeout the maximum time to wait for the recording to complete in units of seconds.

12.18 playback
playback() instructs the Etherstore of playback a portion of the file associated with a
specific file descriptor.

etherStore.playback(fd , start , stop)
fd is the file descriptor associated with the file to be played back.
start is the time offset from the start of the file at which playback should
commence in units of seconds.
Stop is the time offset from the start of the file which playback should cease
in units of seconds.

12.19 waitPlayback
waitPlayback() waits for the current playback to complete or for a timeout to expire.

etherStore.waitPlayback(timeout)

timeout the maximum time to wait for the playback to complete in units of seconds.

12.20 playbackForever
playbackForever() instructs the Etherstore to playback the file associated with a specific file
descriptor in a continuous loop.

etherStore.playbackForever(fd)

MorephE. etherstore User Guide V2.0

…a di!erent perspective

19

fd the file descriptor associated with the file to be played back

12.21 playbackCancel
playbackCancel()stops the current playback.

etherStore.cancelPlayback()

12.22 exitApp
exitApp() will cause the Sapphire application to exit and control return to the Moreph30
supervistor program,

res = etherStore.exitApp()

res will be set to False if the command fails.

12.23 hardwareReset
hardwareReset() will cause the Etherstore to reboot.

etherstore.hardwareReset()

12.24 powerDown
powerDown() will power down the Etherstore.

etherStore.powerDown()

12.25 getFriendlyName
getFriendlyName() will return the friendly name of the Etherstore unit.

name = etherStore.getFriendlyName()

name is a string containing the friendly name of the Etherstore unit.

12.26 getSerialNumber
geSerialNumber() will return the serial number of the Etherstore unit.

sn = etherStore.getSerialNumber()

sn is an integer containing the serial number of the Etherstore unit.

